skip to main content


Search for: All records

Creators/Authors contains: "Santos, Stephany"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Mechanical distension beyond a particular threshold evokes visceral pain from distal colon and rectum (colorectum) and thus biomechanics plays a central role in visceral nociception. In this study we focused on the layered structure of the colorectum through the wall thickness and determined the biomechanical properties of layer-separated colorectal tissue. We harvested the distal 30 mm of mouse colorectum and dissected into inner and outer composite layers. The inner composite consists of the mucosa and submucosa while the outer composite includes the muscular layers and serosa. We divided each composite axially into three 10 mm-long segments and conducted biaxial mechanical extension tests and opening-angle measurements for each tissue segment. In addition, we quantified the thickness of the rich collagen network in the submucosa by nonlinear imaging via second harmonic generation (SHG). Our results reveal the inner composite is slightly stiffer in the axial direction while the outer composite is stiffer circumferentially. The stiffness of the inner composite in the axial direction is about twice that in the circumferential direction, consistent with the orientations of collagen fibers in the submucosa approximately ±30 degrees to the axial direction. Submucosal thickness measured by SHG showed no difference from proximal to distal colorectum under load-free condition, which likely contributes to the comparable tension stiffness of the inner composite along the colorectum. This, in turn, strongly indicates the submucosa as the load-bearing structure of the colorectum. This further implies nociceptive roles for the colorectal afferent endings in the submucosa that likely encode tissue-injurious mechanical distension. 
    more » « less